MATLAB EXPO

Using Multicore CPU to Speedup Desktop Simulation of Electrical Power System

Luke Zhou, MathWorks

Are you doing this?

Very large electrical power grid EMT Simulation

Model Scale : 4*29 bus system Simulation Step Size : 75us Simulation Stop Time : 4.5s Simulation Time Cost : 320s

Model Scale Simulation Step Size Simulation Stop Time Simulation Time Cost

Detailed wind farm simulation

- : 20 DFIG WT
- : 1us
- :0.2s
 - : 1000s

Details

Challenge

- Large Electrical Power Grid simulation costs a lot of computing time.

Original demo

Challenge

Solution Parallel Simulation

Solution Model decouple

 Decouple physical model with 'Decoupling Line'.

> Decoupling Line (Three-Phase)

one model.

- Decoupling Line (Three-Phase) Network Coupler (Voltage-Voltage) Put each pieces of model into
- Build communication channels between models with 'PSIO'.

PSIO Send PSIO Receive

CPU Core 1

CPU Core 2

CPU Core 4

 Use Parallel Computing Toolbox start several Simulink processes for Parallel Simulation

CPU utilization is much higher

Start Parallel Simulation

Control Panels of Parallel Simulation

Model selection

Controls		Results		
Initialize	Start Simulation	1	power_wind_dfig_det_serial_x20	<labc_grid_conv_p< td=""></labc_grid_conv_p<>
		2	power_wind_dfig_det_serial_x20	<p_pu></p_pu>
		3	power_wind_dfig_det_serial_x20	<q_pu></q_pu>
Plot	Compare	4	power_wind_dfig_det_serial_x20	<vabc_grid_conv_< td=""></vabc_grid_conv_<>
		5	power_wind_dfig_det_serial_x20	<vdc_v></vdc_v>
Import Results	Clear Results	6	power_wind_dfig_det_serial_x20	<wr_pu (ig="" speed)<="" td=""></wr_pu>
		7	power_wind_dfig_det_serial_x20	<labc_grid_conv_p< td=""></labc_grid_conv_p<>
		8	power_wind_dfig_det_serial_x20	<p_pu></p_pu>
Simulation Time (s) Simulation Mode	0.2	9	power_wind_dfig_det_serial_x20	<q_pu></q_pu>
		10	power_wind_dfig_det_serial_x20	<vabc_grid_conv_< td=""></vabc_grid_conv_<>
		11	power_wind_dfig_det_serial_x20	<vdc_v></vdc_v>
		12	power_wind_dfig_det_serial_x20	<wr_pu (ig="" speed<="" td=""></wr_pu>
		13	power_wind_dfig_det_serial_x20	<labc_grid_conv_< td=""></labc_grid_conv_<>
lodels		14	power_wind_dfig_det_serial_x20	<p_pu></p_pu>
Select models	Open models	15	power_wind_dfig_det_serial_x20	<q_pu></q_pu>
		16	power_wind_dfig_det_serial_x20	<vabc_grid_conv_< td=""></vabc_grid_conv_<>
environ wind die det envirol v00 et		17	power_wind_dfig_det_serial_x20	<vdc_v></vdc_v>
power_wind_dtig_det_serial_x20_p1		. 18	power_wind_dfig_det_serial_x20	<wr_pu (ig="" speed<="" td=""></wr_pu>
power_wind_dtig_det_serial_x20_p2		. 19	power_wind_dfig_det_serial_x20	Vabc_B25 (pu)
power_wind_dfig_det_serial_x20_p3		. 20	power_wind_dfig_det_serial_x20	labc_B25 (pu)
power_wind_dfig_det_serial_x20_p4		. 21	power_wind_dfig_det_serial_x20	<labc_grid_conv_< td=""></labc_grid_conv_<>
power_wind_atig_aet_serial_X2U_p5		. 22	power_wind_dfig_det_serial_x20	<p_pu></p_pu>
		23	power_wind_dfig_det_serial_x20	<q_pu></q_pu>
		24	power_wind_dfig_det_serial_x20	<vabc_grid_conv_< td=""></vabc_grid_conv_<>
		25	power wind dfig det serial x20	<vdc v=""></vdc>

Simulation Result List

Simulation Test Wind Farm Test

20 DFIG WTs are divided into five models, A six cores CPU is used for Parallel Simulation

Full Model

Power_wind_dfig_det_serial_x20 - Simulink

DEBUG

•

MODELING

FORMAT

APPS

≠

AΞ

 \sim

01

>>

Ready

SIMULATION

•=

Simulation Result

A Six Cores CPU is used for Parallel Simulation

Results are consistent

Simulation Result

Electrical power grid : Simulation Speed Improvements

- Full is original model, which whole electrical grid
 in one model
- Parallel is four models run parallelly in CPU
- Parallel is more than four times faster than Full
- Long time simulation have better improvement
- PCT initialization cost some time for 1s case

Simulation Result Electrical power grid : Voltage compare

Parallel 4 models

Simulation Result Electrical power grid : Voltage compare Full model

Parallel 4 models

Simulation Result Electrical power grid : Voltage compare

Simulation Result Electrical power grid : Rotor Speed

Full model

Parallel model

Conclusion

- Large electrical grid, long time test and detailed new energy simulation cost a lot of time.
- Parallel Simulation can significantly speed up simulation, and keep result accuracy
- Speed Improvement is proportional to the number of cores in Normal Mode
- With Accelerator mode simulation can be much faster than Normal Mode
- Parallel Simulation suits for both long duration and small step detailed simulation
- Use Parallel Simulation Control Panel to run model and check result

MATLAB EXPO

Thank you

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.